
Application Oriented
Performance Characterization and
Benchmarking

Erich Strohmaier
Future Technology Group
EStrohmaier@lbl.gov
http://ftg.lbl.gov

SC2003

Co-sponsored by DOE/OSC and NSA

C O M P U T A T I O N A L R E S E A R C H D I V I S I O N

Motivation

• Application performance is what we care about
most.

• Using real applications for performance work can
be very tedious.

• Synthetic benchmarks are much easier.
• But we generally don’t understand how the

performance of synthetic benchmarks relates to
applications!

• Is there a methodology to create synthetic
benchmarks, which capture the main
performance effects of real applications?

Approach

• Select the main performance aspects of
our codes.
– (or what we believe they are).

• Develop a quantitative characterization for
these performance aspects.
– Avoid using any specific hardware models for

this characterization as far as possible!

• Develop a synthetic scalable performance
probe implementing these characteristics.

Approach cont.

• Test the usefulness of the
characterization with a set of codes.

• If we succeed the synthetic
benchmark performance can be used
as approximation for the application.

• Initial focus is the performance
influence of global data-access.

Outline

• Application Performance
Characterization (Apex)

• Memory access probe (Apex-MAP)
• Test Kernels
• Results and Correlations
• Extensions

Application Performance
Characterization (Apex)

• We ignore computational aspects
(for now).

• We view data access as composed of
one or multiple data access streams.

• We characterize data access streams
independent of each other.

• We try to use as few streams as
possible (one).

Performance Aspects of
Data Access Streams

• Regularity – 2 extremes:
– Random walk in memory
– Regular advance in memory

• Data set size (M)
• Length of contiguous data access (L)

– Vector Length
• Temporal Locality (Re-use of data)

– Characterized by the mean (k) of the number of
accesses to the last location within the next M
accesses.

• Stride (for regular access streams?)

Re-Use Number

Define a “re-use” number:
• Let M be the used memory in words.
• The code has a total of N data accesses.
• We look at all the accesses to a memory

location X within the next M data access
steps.

• We call the average k of all these access
numbers the re-use number k.

M N

X

Synthetic Benchmark

• Now we design a synthetic
benchmark which:
– Generates a single data access stream.
– Has our performance parameters as

input.
– Is scalable.
– Is free of architecture specific

performance artifacts.

Execution Model

• Use an array of size M.
• Access data in vectors of length L.
• Random:

– Pick the start address of the vector randomly.
– Use the properties of the random numbers to

achieve a re-use number k.
• Regular:

– Walk over consecutive (strided) vectors
through memory.

– Re-access each vector k-times.

Memory Access Probe
Apex-MAP

For random access we choose:

• Use an 1024 address index for data access.

• Use the Power distribution for the non-uniform
random address generator.

– Self-similar and thus scale invariant.

– Exponent ? in [0,1]

• ? =1 : Uniform random access.

• ? =0 : Access to a single vector only.

Apex-Map:
Inner Loop - Random

for (i = 0; i < N; i++) {
initIndexArray(I); Initialize addresses
CLOCK(time1);
for (j = 0; j < I/4; j++) { Unrolled four times

pos = ind[j*4];
…
for (k = 0; k < L; k++) { Vector access

res0 += data[pos + k];
…

}
}
CLOCK(time2);

}

System Used

3.240.582800Xeon

5.3321641600Opteron

1300

375

200

Freq.
[MHz]

10.681.4
(L3 128)

32Power4

4.04864Power3

3.24464Power3

Memory
Bandwidth

[GB/s]

Max outstand.
load misses

L2
[MB]

L1
[kB]

Memory Hierarchy Test

L=1; uniform random (a=1)

1

10

100

1,000

1 10 100 1,000 10,000 100,000 1,000,000

M [kB]

ti
m

e
[c

yc
le

s]

IBM Power3 (200MHz)
IBM Power3 (375MHz)
IBM Power4 (1300MHZ)
AMD Opteron (1600MHZ)
Intel Xeon (2800MHZ)
Cray X1 - no vector
Cray X1 - vectorized

Memory Hierarchy Detail

L=1; uniform random (a=1); Seaborg

0.1

1

10

100

1000

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

M [kB]

ti
m

e
[c

yc
le

s] Write
Read

Vector Length

Uniform random (a=1); Seaborg

0

1

10

100

1,000

1 10 100 1,000 10,000 100,000

Vector Length L

tim
e

[c
yc

le
s]

32 kb

64 kB

128 kB

2 MB

8 MB

524 MB

Validation - Ideal

• Take a set of test codes.
• Characterize them by selecting

parameters.
• Time them.
• Run Apex-MAP with the same

parameters.
• Check the correlation between the

timings.

Validation - Real

• Use random access for all kernels to start
with.

• Choose M to be the memory used by the
kernel.

• Count the total number of memory
accesses on a reference platform.

• Do a least-square fit of the times per
access to determine a single set of L and k
for all platforms.
– 1 = L = 16k (powers of 2 or 4)
– a ={0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1}

Test Kernels

• Radix (Integer Sort)
• N-Body (Interaction of N bodies in three

dimensions)
• NAS CG (Conjugate Gradient, sparse linear

systems)
• FFT (1-dimensional complex FFT)
• Matrix Transpose
• Matrix Matrix Multiplication

– This is included as ‘worst’ (least fitting) test-case.

Statistical Details

• Linear Timing Model:
Kernel = Factor * Apex-MAP

• No constant!
• Minimize the combined SSE (R2).
• This does not always give a clear

best choice.

R2 – Example
FFT on Seaborg

0.001 0.003 0.005 0.010 0.025 0.050 0.100 0.250 0.500 1.000
1 0.78 0.94 0.93 0.79 0.52 0.36 0.19 0.16 0.21 0.24
2 0.62 0.88 0.96 0.85 0.61 0.38 0.27 0.25 0.26 0.28
4 0.52 0.78 0.95 0.91 0.68 0.47 0.32 0.27 0.28 0.31
8 0.37 0.64 0.89 0.98 0.81 0.59 0.40 0.33 0.33 0.36

16 0.26 0.50 0.74 0.94 0.93 0.72 0.52 0.41 0.40 0.43
32 0.19 0.33 0.53 0.79 0.98 0.88 0.70 0.56 0.52 0.53
64 0.10 0.22 0.36 0.60 0.90 0.97 0.90 0.76 0.70 0.69

256 0.03 0.08 0.13 0.25 0.54 0.82 0.97 0.87 0.81 0.79
1024 0.02 0.04 0.08 0.15 0.37 0.68 0.94 0.92 0.85 0.83
4096 0.02 0.05 0.09 0.16 0.39 0.73 0.96 0.89 0.83 0.79

16384 0.02 0.06 0.14 0.28 0.63 0.94 0.90 0.66 0.58 0.56

R-Square
a

L

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

100 1,000 10,000 100,000 1,000,000

Data Set Size [kB]

R
at

io
 K

er
n

el
/A

p
ex

-M
A

P

Hockney Seaborg Cheetah Opteron

Xeon Cray X1

Radix

L=1; a=0.0025

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

100 1,000 10,000 100,000 1,000,000

Data Set Size [kB]

R
at

io
 K

er
n

el
/A

p
ex

-M
A

P

Hockney Seaborg Cheetah Opteron
Xeon Cray X1

N-Body

L=4096; a=0.025

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

10 100 1,000

Data Set Size [MB]

R
at

io
 K

er
n

el
/A

p
ex

-M
A

P

Hockney Seaborg Cheetah Opteron Xeon

NAS CG

L=1; a=0.1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 200 400 600 800 1,000 1,200 1,400

Data Set Size [kB]

R
at

io
 K

er
n

el
/A

p
ex

-M
A

P Hockney Seaborg Cheetah Opteron Xeon

NAS CG – Indirect Vector only

L=1; a=1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

100 1,000 10,000 100,000 1,000,000

Data Set Size [kB]

R
at

io
 K

er
n

el
/A

p
ex

-M
A

P

Hockney Seaborg Cheetah Opteron Xeon

FFT

L=4096; a=0.1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

100 1,000 10,000 100,000 1,000,000

Data Set Size [kB]

R
at

io
 K

er
n

el
/A

p
ex

-M
A

P

Hockney Seaborg Cheetah Opteron Xeon

Matrix Transpose

L=32; a=1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

100 1,000 10,000 100,000 1,000,000

Data Set Size [kB]

R
at

io
 K

er
n

el
/A

p
ex

-M
A

P

Hockney Seaborg Cheetah Opteron Xeon

Matrix Transpose - regular

L=M/stride; stride=f(M)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

10 100 1,000 10,000 100,000

Data Set Size [kB]

R
at

io
 K

er
n

el
/A

p
ex

-M
A

P

Hockney Seaborg Cheetah Opteron Xeon

M-M Multiplication

L=1; a=0.25

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

10 100 1,000 10,000 100,000

Data Set Size [kB]

R
at

io
 K

er
n

el
/A

p
ex

-M
A

P

Hockney Seaborg Cheetah Opteron Xeon

M-M Multiplication - regular

L=M/stride; stride=f(M)

Parallel Radix – Early Tests

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16 18

Processors

R
at

io

14
16
18
20
22
24
26

Parallel N-Body – Early Tests

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16 18

Processors

R
at

io

1
4
16
64
256
1024
4096

Parallel CG – Early Tests

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16 18

Processors

R
at

io

A
B
C

Experiences

• A lot of the difficulties are in choosing the
right details of the implementation.
– Too many alternative implementations

possible.
– Which optimizations should one consider?

• The amount of measurements to do and to
analyze becomes easily overwhelming.
– Currently we take in the order of 3000

measurements per systems for the sequential
study alone. (and we do it multiple times)

Conclusions

• Approximation of the more irregular
kernels by a single power function
random access stream works fine.
– In particular in the sequential case.

• The regular kernels are hard to
approximate with random access
streams and need a regular access
stream.

• Backfitting L and k is not trivial.

